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Abstract—AGINAO builds its cognitive engine by applying self-

programming techniques to create a hierarchy of interconnected 

codelets – the tiny pieces of code executed on a virtual machine. 

These basic processing units are evaluated for their applicability 

and fitness with a notion of reward calculated from self-

information gain of binary partitioning of the codelet's input 

state-space. This approach, however, is useless for the evaluation 

of actuators. Instead, a model is proposed in which actuators are 

evaluated by measuring the impact that an activation of an 

effector, and consequently the feedback from the robot sensors, 

has on average reward received by the processing units. 

Keywords—artificial general intelligence; self-programming; 

epigenetic robotics; NAO robot; intrinsic reward; autonomous 

mental development; 

I.  INTRODUCTION 

Epigenetic robotics addresses the question of autonomous 
mental development by applying a control program – herein 
referred to as the cognitive engine – embedded in a physical 
robot that is interacting with the natural environment. The task 
may be characterized by the following features: (a) the engine 
doesn’t have any a priori knowledge on the nature and meaning 
of its sensors and actuators, possibly not even on a distinction 
between being a sensor/actuator or not, (b) the computational 
resources of the engine are limited, the world partially 
observable, the flow of sensory data overwhelming, and the 
learning conducted in real time, (c) the objective of the task – 
referred to as the global fitness function – is a rather general in 
nature and not directly transferable to low level technical 
implementation; the fitness function is not given, either, thus 
must be carefully selected by the engine designer, (d) the 
engine must learn the rules of its embodiment and eventually 
the higher level mental skills, e.g., the understanding of a 
distinction between its body and the outer world, possibly the 
understanding of the existence of other independent intelligent 
agents. We would add yet another feature, not shared by all 
dealing with the domain: (e) the actuators and the sensors are 
accessible in raw format, i.e., without or with very little pre-
/post-processing.  

All of the listed above features, besides their obvious 
disadvantages, have one common advantage: we do not impose 
any restrictions on the structure of the emergent architecture, 
keeping in mind all the failures of the past approaches that have 

apparently assumed too optimistic constraints on the approach 
to artificial intelligence. 

II. THE AGINAO PROJECT 

A. The AGINAO Self-Programming Engine 

A detailed presentation of the construction of the AGINAO 
self-programming engine is presented in [1]. What follows is 
an excerpt essential for the presentation of the paper thesis. 

The AGINAO cognitive engine uses the NAO robot by 
Aldebaran Robotics as a testbed. The emergent architecture of 
the cognitive engine is constructed as a control program 
executed on a devised virtual machine (VM). Functionally, the 
control program is robot-embedded, though technically it is 
executed on a remote and more powerful host, connected to the 
robot via a wireless link; the robot to act as an interface to the 
outer world only. The architecture of the cognitive engine is 
open-ended and adjusted for real-time adaptability. 

The operation of the cognitive engine is based on a 
conjecture that any algorithm, including the hypothesized 
algorithmic artificial mind, is computable on a Universal 
Turing-Machine (UTM) – the Church-Turing thesis, and that a 
suitably designed VM will have the flexibility and power 
comparable to a UTM. On the other hand, however, the target 
algorithm – any of the possibly infinitely many accomplishable 
implementations – is unknown.  

This approach assumes a somewhat random construction of 
the target algorithm, and its evaluation during the learning 
process. The creation of such an algorithm as a single piece of 
code is theoretically sound but at best intractable [2]. Various 
methods have been attempted to deal with the incomputability-
intractability question, to list a few [3], [4]. AGINAO builds its 
cognitive engine as a hierarchy of interconnected data-
structures, named concepts, each with a built-in piece of 
executable code, named codelet. The unidirectional links 
between concepts specify both the order the concepts are 
applied (executed) and the data-flow between the concepts. 
Typically, the output of each concept becomes an input of 
many other of its descendents. 

The cognitive engine is not a neural network, however. 
Concepts from the hierarchy stand for a repository of  programs 
to be executed on the mentioned above VM. The system is 



capable of running many threads concurrently, not excluding a 
concurrent execution of multiple copies of the same concept's 
codelet, most likely processing different data. 

There are also special-type predefined atomic concepts 
connected to the robot sensors and actuators. For the cognitive 
engine, they look much like regular concepts but their 
implementation lacks a codelet; a hidden [for the cognitive 
engine] functionality is encoded instead. The sensory concepts 
are integrated to the hierarchy as the roots, while the actuator 
concepts as the terminal leaves.  

During the continuous operation of the cognitive engine, 
the candidates for regular concepts are generated by a random 
process. The created codelets are tiny programs, consisting of 
typically 4–10 instructions (symbols of the input alphabet) of 
the VM. The instruction-set resembles those of early 1980s 
microprocessors. By virtue of their compactness, the codelets 
are easily tractable. Starting from its creation, a codelet passes 
through the following mutistep process of evaluating its 
validity and applicability, resulting in the majority of the 
preliminary codelets to be discarded: 

• Heuristic-search in program-space applies tricky 
heuristics to sort-out pieces of code obviously useless 
and imposes many straightforward constraints. This 
step is enforced before a codelet is integrated into the 
hierarchy. 

• Runtime-error detection, performed during codelet 
execution, catches fatal errors and protects against 
running out of computational resources, e.g., infinitely 
looping.  A common type of a fatal error is an attempt 
to read/write data out of scope. 

• Evaluation of the concepts for their fitness to the 
overall structure of the hierarchy discards concepts that 
are rarely used and those having low value. 

The last condition entails the necessity of implementing a 
measurement of concept’s value. AGINAO applies a sort of 
temporal-difference learning (TD-learning) where concept's 
value is computed from both the immediate-reward and the 
discounted future-reward. The expected depth of the concept 
hierarchy, however, suppresses and consequently invalidates 
the discounted reward on long distances, a phenomenon known 
as convergence to a suboptimal policy [5]. 

On the other hand, the discounted reward may be beneficial 
on short distances. This may be compared to driving a car. The 
driver may estimate the optimal steering policy for a few time-
steps ahead, by observing the obstacles within the visible 
distance. With every time step, the horizon also moves one step 
forward, and a new policy may be obtained. On the other hand, 
anything that happens closer to the destination of the journey 
has no effect on the evaluation of the current policy, even if the 
opposite traffic has been influenced by that, i.e., carries some 
information. It may be said that solving the main problem 
(getting to the destination) is biased by a carefully selected 
immediate-reward function. AGINAO introduces a notion of 
intrinsic-reward (as immediate-reward) based exclusively on 
information-theory and calculated from self-information gain 
of binary partitioning of the codelet's input state-space. 

B. Binary Space-Partitioning and Computation of the 

Reward 

The application of binary space-partitioning for the 
estimation of the immediate-reward was first introduced in [6]. 
Fig. 1 shows the idea of binary space-partitioning. 

 

Figure 1.  Binary space-partitioning 

AGINAO uses a unified format for data interchange: a 
variable-size vector of integers. The input of a concept may be 
depicted as discrete-time points of a spatial-temporal state-
space. The task of the codelet is to separate the positive 
(pattern-matching) examples from the negative (non-pattern-
matching). The definition covers temporal patterns, as well. 

An illustrative example might be to consider a task of 
detecting the letter T. Imagine that the inputs of a 2-input 
concept are interpreted as: (1) to signal a detection of a 
horizontal bar; (2) to signal a detection of a vertical bar,. The 
inputs are connected to the outputs of some lower level 
concepts. If non of the bars were detected in the visual scene, 
the inputs will not receive data. The values of the input vectors 
represent the coordinates of the detected bars. The task of the 
codelet is to take the coordinates and check if the spatial 
arrangement of the bars matches the shape of the letter T. 
Moreover, the bars must coexist in real time. If a match is 
found, the output will forward some data vector (possibly letter 
coordinates) to other concepts. Otherwise, the execution of that 
thread would be abandoned. Possibly, another concept applied 
to the same state space could detect letter L. 

From the proportion of the Npos positive and Nneg negative 
examples, the probability (variable in time) of encountering a 
positive example is computed: 

 p = Npos/(Npos+Nneg) (1) 

The self-information [7], i.e., the amount of information (in 
bits) provided by an event of getting a positive example, may 
be extracted: 

 I = –log2(p) (2) 

Since the probability of getting a positive example is p, we 
get a measure of mean reward, as average information-gain: 

 r = –p log2(p) (3) 



The notion of self-information expresses our intuitive 
feeling that the more rare an event is, the more information it 
entails. On the other hand, expecting a reward from a rare event 
is rather risky. The reward function maximizes at p=1/e (Fig. 
2). The mean reward, rather than the reward provided by a 
positive example, is interpreted as immediate-reward for TD-
learning, for we want to estimate the value of a concept. 

 

Figure 2.  –p log2(p) 

Self-information is also a special case of Kullback-Leibler 
distance from a Kronecker delta representing the matching 
pattern to the probability distribution [6], [8]. 

Worth noting are the following observations: 

• Since the partitioning is performed by a codelet, and 
the power of the VM is equivalent to a UTM, a concept 
is capable of detecting virtually any regularity in the 
input data. 

• While the algorithm of data partitioning is codelet 
specific, the resulting probabilities, and hence the 
computed rewards, are input-data specific. 
Consequently, for different state-spaces we would get 
different measures of reward for a given codelet. 

• A codelet may be regarded as a binary non-linear and 
unsupervised classifier that is supposed to carry-out not 
the best but any partitioning. As a rule, for each state-
space many different codelets will be applied 
concurrently. In a continuous process of adding, 
evaluating and removing concepts, the cognitive 
engine attempts to maintain a subset of the most 
valuable concepts for each state-space. 

• Only a detection of a positive example is rewarded. A 
failure to match a pattern simply cancels the thread and 
skips the TD-learning update step. 

C. Global Fitness Function 

AGINAO employs a notion of [a global] average reward 
per time step. Instead, however, of using the discrete time-step 
of a Markov Decision Process (MDP), the following function, 
based on real-time events and exponential decay, is applied: 

  (4) 

where Rt is the computed average reward at current real-

time t, Rt0 is the average reward computed at time t0 in the past 
(the last time it was computed), rt is the immediate-reward at 
the current time t, ρ is a positive constant to control the rate of 
decay. The average reward is computed as a single value 
shared by all processes of the cognitive engine and updated 
every time the immediate reward is received. 

The global fitness function is defined as the maximization 
of the average reward per time step. 

D. Artificial Economics 

The cognitive engine as a whole behaves like a complex 
adaptive system. The concepts operate as interacting adaptive 
agents, collaborating and/or competing, and fighting for the 
computational resources, according to the rules of implemented 
artificial economics. At every time there is an overabundance 
of the codelets requesting access to the VM and awaiting in a 
priority queue. Many of these codelets, possibly most of them, 
will never get serviced, exactly like in nature, most individuals 
will never breed offspring. 

For the topic of this paper, it is sufficient to mention that 
each codelet’s thread is assigned: (a) priority – a positive 
integer governing the order of execution of the codelets, (b) 
expiration time – an unconditional deadline for every thread, 
(c)  resources – a positive integer limit of the utilization of the 
VM processing time (in steps). The latter also solves the 
challenge of dealing with the halting problem. 

The resources are expresses in the same units as the 
immediate-reward, subject to a normalization coefficient β>0. 
A pattern-matching thread is rewarded with extra resources s 
computed as s=βI, where I is the self-information gain in bits. 
Depending on the amount of the available resources, the thread 
will pass execution and its output data to the descendents, or 
abandon. 

III. EVALUATING ACTUATORS 

A. Problem Specification 

From the cognitive-engine perspective, an actuator is 
perceived as a concept with known number of inputs and 
known minimum sizes of each input (minimum number of 
integers of input vector). The meanings of the individual 
actuators and the meanings of their inputs are unknown and are 
supposed to be discovered during the learning process. 

To be executed and evaluated, an actuator-concept must be 
integrated into the concept hierarchy. The integration means 
connecting the input(s) of an actuator-concept to the output(s) 
of the regular ones. Each individual actuator is represented by a 
single atomic actuator-concept template. An actuator, however, 
may be potentially linked concurrently to different location of 
the concept hierarchy, to mean that it could be executed in 
different contexts. On the other hand, it wouldn’t be very 
beneficial to evaluate a given actuator with a single-value 
parameter, shared by all different contexts. To solve this 



problem, each atomic actuator-concept T is copied before being 
connected to the hierarchy; then the copy Ti is evaluated 
independently in each context. A future possible removal of a 
one of the copies, due to low value, will not invalidate the other 
copies. This approach, however, implies the question of 
resolving some conflicts, discussed below. 

B. TD-learning Rule for Actuator 

For regular concepts, the value Qi,t of action ai at time t is 
updated according to the following TD-learning rule: 

  (5) 

where ri,t+1 is the immediate reward at time t+1, α is the 
learning rate, γ is the discount factor, and V is the weighted 
average of values of all actions of the concept the action ai 
points to, computed from the equation: 

  (6) 

Where pi is defined by (1). The probability of selecting 
action ai at time t is defined as: 

  (7) 

The above definition of TD-learning rule is not applicable 
for the actuators for many reasons: (a) actuator-concepts do not 
contain a codelet that computes the immediate-reward, (b) the 
actuator-concepts do not really partition the state-space, but 
merely function as a physical-actuator proxy, (c) the 
computation of the weighted average value V is impossible due 
to the fact, that actuator-concepts are terminal-leaves and do 
not connect to next actions/descendents. What follows, the 
immediate-reward must be removed from the TD-learning rule 
equation, and the weighted average value must be replaced 
with a value of an actuator-concept evaluated independently. 
Effectively, for the next-to-last [the terminal] concept in a 
chain we get the following formula: 

  (8) 

where Ai,t+1 is the independently evaluated estimation of 
actuator-concept at time-step t+1. 

C. Basic Idea of Actuator-Concept Evaluation 

The idea of evaluating the actuator-concepts is based on an 
assumption that, rather than introducing a new source of 

reward, we would exploit the already defined information-
theory based reward.  

Let us consider first what happens when an actuator is 
activated, and take a robot's arm movement as example. We 
anticipate that the resulting impact on the environment will be 
reflected in robot's sensors. To focus attention, consider the 
visual sensory system. The robot's arm repositioning may cross 
the visual field, or not. It will result in observing/detecting a 
pattern in the former case, and not in the latter case. According 
to the discussed above rules of artificial economics, only the 
former case will be rewarded with information-gain and 
resources. What follows, we want to maintain the concept 
structures responsible for the observed feedback and discard 
those which effect on the sensors is unknown. 

D. Actuator's Cost Function 

Before continuing, we have to make yet another remark. 
Every thread is given a resources limit. For regular concepts, 
this is interpreted as the limit for the VM processing time. As 
for the actuators, since we want to observe the rules of artificial 
economics, we have to convert the resources to the physical 
energy-consumption equivalents of the effectors, herein  
referred to as the cost. The mind-body energetic 
correspondence – natural in the living organisms – must be 
simulated in case of  the robotic embodiment. 

The cost of activating a given actuator is not fixed, but 
depends on its input parameters, like range of the arm 
movement. We don't know the meanings of the actuator-
concept inputs, however, not even if increasing the input's 
vector value increases the movement range and the cost of 
actuator’s activation. The details of internal implementation are 
hidden for the cognitive engine. 

Yet another question arises: a typical cost of actuator 
activation – if expressed in the same units as the resources – is 
much beyond the average resources assignment of a thread. 
This observation seems quite obvious, if one compares energy 
dissipation of a robot motor and that of executing a few 
hundred instructions by a contemporary PC. What follows, an 
activation of an actuator must result from many consecutive 
requests to the actuator-concepts of a given actuator. 

Let's assume that the cost of activating an actuator Ti is 
given by function Ci(x1,...,xn), where x1,...,xn are the input 
parameters (vectors of integers, the internal data format), n>0; 
With each request to execute actuator Ti some resources si,j are 
passed to it. A naïve approach to deal with the activation 
problem would be based on implementing an actuator as a 
resources integrator. Once the combined resources have 
exceeded the cost threshold, the actuator would be activated: 

  (9) 

We encounter a problem here, however, if the consecutive 
requests differ in the input values (x1,...,xn), i.e., if the actuator 
receives contradicting requests, like: move the arm left and 
right. Any summing of the resources in such case is senseless, 
as the requests come most likely from different contexts. 



Attempts to overcome this problem by, e.g., computing the 
weighted average of the request-commands' inputs, or 
computing independent sums for each set of input parameters, 
until any of them exceeds the threshold, seems inappropriate. 
If, on the other hand, the input parameters differ insignificantly, 
we have to figure out whether count them together or 
separately. If the summing takes too long, the very first 
requests seem somewhat depreciated, and should not be taken 
into account. 

We propose a solution based on a notion of probability of 
executing an actuator, computed as: 

  (10) 

This approach solves all the problems mentioned above. It 
also assigns higher probability to stronger signals (resources), 
that might differ significantly if the requests come from 
different contexts. A higher probability is also assigned to 
lower cost actions, e.g., an arm movement on a shorter distance 
is more likely. 

One might observe that if the consecutive input vectors 
(x1,...,xn)

1
 are fixed [constant], if S = {si,1,...,si,m}, m>0, and: 

  (11) 

 then: 

  (12) 

that means that on average we get the same frequency of 
activating an actuator as in the case of a resources integrator 
(9), i.e., exactly what would be expected. 

E. Evaluating the Actuator Concept 

Now imagine that an actuator was activated and we expect 
that – after some delay, currently unknown, but counted in tens 
or hundreds of milliseconds rather than nanoseconds – we  
receive a feedback, that will be reflected in robot's sensory 
system as increase of immediate-reward. At this point, we have 
completely no idea in what portion of the concept hierarchy 
would the impact be observed. The only available measure of 
the impact is the change of average reward per time step, 
defined by (4). 

Let Χi,to = Ci(x1,...,xn)/β at time t0 , i.e., the time
2
 the actuator 

Ti was activated. Χi,to is just the cost recorded at time t0 and 
expressed in bits, i.e., the cost related to the current input vector 

                                                           
1 It is a vector of vectors of integers. 
2 Again, we are using alternately the notion of time t as time-step of MDP, or 
as real-time. The distinction should be read from the context. 

(x1,...,xn). At time t>t0 , i.e., after t-t0 delay, the following value 
update rule is performed: 

  (13) 

where Rt are Rt0 are average rewards per time step 
computed at times t and t0 , respectively, α is the learning rate, 
1≥δ>0 is a normalization coefficient. The value Rt  – Rt0 may 
be negative. Even if Rt  – Rt0 = 0, the Ai,t will decrease, due to 
the cost term. If Ai,t goes below a predefined positive threshold 
limit, the related actuator-concept will be removed. 

The δ coefficient was introduced to take into account the 
fact, that the time delay t-t0 is relatively long. What follows,  
many concurrently activated actuators might have influenced 
the change in average reward, before the update rule (13) was 
performed. We have to share the change of average reward 
among all active actuator-concepts. Consequently, the δ 
coefficient must be implemented as a function δ(t) rather than a 
constant. In the current implementation, δ(t) is defined as 1/N, 
where N>0 is the number of actuator-concept that have 
activated the actuators but have not passed the value-update 
step yet. 

F. Possible Future Improvments of the Evaluation Method 

The presented above method of actuator-concept evaluation 
is quite limited for the following reasons: 

• even if no actuator is activated, the average reward is a 
rather volatile function of time, due to both the internal 
cognitive processes and the events in the environment 
not related to robot actuators; what follows, not all 
changes in the average reward level may be attributed 
to actuator’s activation, 

• the temporal delay t-t0 is unknown and most likely 
variable. The delay is caused by at least the following 
three phenomena: (a) the inertia of the actuator, (b) the 
time the environment reacts to an action, (c) the time 
the sensory data propagates through the concept 
hierarchy. The latter to mean that the average-reward 
change function is closer to a normal or Boltzmann 
distribution rather than a single peak, for the extra 
reward may come from many levels of the concept 
hierarchy. An attempt to determine experimentally a 
typical delay is presented in section on experimentation 
(Fig. 3). 

We have to highlight that this study focuses on simple 
reflexes, expected to happen within a couple of seconds at 
most. We do not consider feedbacks that would require 
sophisticated world-modeling. The purpose of the learning is to 
establish the functionality of the actuators, and then suppress 
further evaluation. Once the functionality is established, the 
value of each actuator-concept Ai is propagated as discounted 
reward via (8), and then via (5). 

The effect of suppression is currently implemented by 
analogy to the method of estimating the probability of 



exploration
3
,  presented in [1]. Let’s assume that for an actuator 

T there exist copies T1,...,Tn, n≥0, with the current value 
estimates A1,...,An. The probability of exploration step (creating 
a new copy Tn+1) is computed as: 

  (14) 

where Aconst is a predefined constant (estimated 
experimentally).  With the increasing number n, and increasing 
value of each Ai , the probability of adding a new actuator-
concept’s copy Ti decreases, and effectively, the evaluation 
process for a given actuator T becomes suppressed. 
Experiments have been conducted with both limited maximum 
value of n (currently 50), and unlimited. In the former case, the 
newly created actuator-concept’s copy replaces the one with 
the lowest current evaluation Ai. 

An improved model of actuator-concept evaluation, that 
hasn’t been implemented yet, would focus on an attempt to 
extract a subset of concepts actually influenced by each 
actuator-concept Ti  independently, and determine the temporal 
delay, then apply the (13) update rule based on the selected 
subset, now with δ=1. This approach would involve the 
following steps: 

• selection of a set of {concept, time-delay} hypotheses, 
independently for each actuator-concept Ti , most 
likely with many hypotheses per concept differing in 
time delay, 

• learning the Bayes net and eliminating the false 
hypotheses, 

• applying the reward changes of only the extracted 
subset of concept for the update rule, now without the δ 
coefficient. 

The task, as presented above, is too computationally 
intensive to be performed on all concepts for all actuators in 
real time. An approach must be found to make the problem 
more tractable. 

IV. EXPERIMENTS 

Fig. 3 presents the results of finding experimentally the 
impact that a change in robot's visual field has on average-
reward-per-time-step function, especially an attempt to 
determine a typical delay of a maximum response. The 
experiment was conducted by running the real robot on the real 
visual data and concurrently overlapping a disturbance 
simulated in software. The data collection step was preceded by 
initial undisturbed learning (50 sec). Then, without interrupting 
the learning, the visual field was stimulated with strong signal 
lasting 100 ms, followed by a 2-sec break, repeated 30 times. 
The average reward level was collected with 10 ms resolution 
and summed over the repeated stimulation periods. The 

                                                           
3 According to a convention assumed in [1] and [6], we would use the name 

exploration for adding a new action, and exploitation for selecting any 
available action, not only the most greedy one.  

maximum of the response seems to be at around 300 ms from 
the beginning of the visual sensory stimulation. The 
experimentally established delay may be used as an a priori 
probability of the maximum response delay for the Bayesian 
learning. 

 

Figure 3.  Average-reward change 

V. SUMMARY 

This paper presented a method of evaluating the actuators 
as an extension of the earlier developed method of evaluating 
the regular concepts processing sensory data. Both approaches 
exploit a purely information-theory based notion of the self-
information gain computed from binary partitioning of 
concept's input state-space. Without introducing a new source 
of reward, and adopting the paradigm of maximizing the 
average reward per time step, the actuators are assessed 
according to the impact they have on the global reward. 
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